Nanoscience is well on its way to establishing itself as one of the critical technologies of the 21st Century. Just as semiconductors gave rise to computers, smart phones, the Internet, medical devices, and an endless stream of consumer products, nanoscience is enabling the development of new technologies in fields as diverse as electronics, medicine, photonics, energy, and quantum physics. Nanoscale constructions provide this flexibility for two reasons. First, they are small and precise enough to interact with molecules in entirely new ways. Nanomedicines, for example, often encapsulate drugs in molecular packages decorated with segments of molecules that enable them to target specific organs and diseases, and, once there, convince those cells to ingest the medication. Metal-organic frameworks, complex molecules engineered to reduce energy use in chemical reactions and capture carbon emissions from combustion, are another example. Second, and more intriguingly, nanoscale devices are closer in size to electrons and photons, and may interact with them in ways that are fundamentally different from the behavior of larger objects. For example, metamaterials, arrays of nanoscale structures, can bend light around an object to make it appear invisible. Nanoscale electronics can exploit quantum phenomena, like electron spin, energy waves, and quantum states to capture, store, and process information. As these technologies and other emerging applications reach commercialization, they are certain to change nearly every sphere of life.
Scientists are radically reengineering simple organisms and attempting to build new cells from scratch. What they are learning could revolutionize our relationship with the natural world. In this spotlight, The Kavli Foundation spoke to three pacesetters in this rapidly emerging field of artificial life: Jef Boeke, Marileen Dogterom and Pamela Silver.
The 2018 Kavli Prize laureates discuss the rapid rise of the CRISPR gene-editing technology and the impact of rewriting the genome on medicine, agriculture and our fundamental understanding of life.
After eight extraordinary productive years, Cees Dekker will transfer the Directorship of the Kavli Institute of Nanoscience Delft (KIND) to his younger colleague Chirlmin Joo. Who is Dr. Joo?
By harnessing the power of nanomaterials, three innovators—Meny Elimelech, Naomi Halas and Omar Yaghi—have developed ways to harvest water from air and make seawater fit to drink.
Physicist Lieven Vandersypen talks about his new role as co-director and the future of the Kavli Institute for Nanoscience at Delft University of Science and Technology.
The race to build the world’s first quantum computer is heating up. A string of new investments from tech industry heavyweights like Microsoft, Intel and Google could finally create a winner. We asked three physicists—Lieven Vandersypen, Shohini Ghose and John Martinis—to estimate the odds.
Nature uses complex molecules to perform miraculous feats, such as turning sunlight into sugars. A new class of crystals is making that kind of complexity accessible to humans. Three nanoscientists—Omar Yaghi, Joseph Hupp and Thomas Bein—discuss their truly transformational way of doing chemistry.
The Kavli Microbiome Ideas Challenge will provide $1 million in grants for innovative tools to investigate how microbes live in complex communities. Three scientists - Tim Donohue, Julie Biteen and Terry Hwa - discuss why it matters.
Two of the 2016 Kavli Prize laureates – Gerd Binnig and Christoph Gerber – discuss how the ability to see and manipulate single molecules and atoms has changed our view of the nanoscale world.